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Protein sequence evolution




Can we model protein
evolution?

Assuming each amino acid evolves
Independent of other sites’ evolution and of
Its past history (Dayhoff, 1972,1978).
Substitution model, Markov model: PAM



Seqguence evolution models
(DNA sequence) have:
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Probabilistic modelling

 The aims is to find a model which describe the
data significantly better than another model

(e.g., comparison to a null model of neutral
evolution)

 Probabilistic models can be used to test

hypothesis evolutionary process acting on a set
of sequences



Maximum likelihood

Gives a likelihood value to each tree given that
the sequences evolved according to that tree and
a given model of substitution:

L= Prob(dataltree, model) Prob(data|tree

We find the tree that maximises L, I.e. makes the
data as probable as possible: “maximum
likelihood”

Gives a likelihood value for the same tree given
two (or more) different models of evolution



Statistics: Likelihood Ratio (LR) Test

» Likelihoods for different models can be
compared for nested models, that is, one
model Is a special case of the other.

* Twice the difference between the log-
likelihoods of two models is c2 distributed

2(logL,-logL,) ~ c?
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Substitution models for DNA,
amino acids and codons

from:

HKY

<K IZHLOuUOWRAEIRPAZQOQHOOQOD Z % P

A G G T to: ARNDCQEGHTILEKMPFPSTWYV

4x4 DNA model 20x20 AA model 61x61 codon model

Jukes & Cantor, 1969; Dayhoff et al. 1978, Kimura,;}P80;
Felsenstein, 1981 & 1984; Hasegawa, Kishino, & Yano, 1985;
Goldman &Yang 1994.



Plan for Today

.  Phylogenetic models for
protein sequence evolution

. Detection of positive selection

lil. Advances in modeling codon
seguence evolution
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. Phylogenetic models for
protein sequence evolution
(AA and codon models)



Amino acid substitution models

from:

4K TP ERPHODTQOAEOQY Z Y P

to: ARNDCQEGHTITLEKMTEFPSTWTYZV
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Examples of AA substitution models

* Average process of evolution for globular proteins:
PAM(1972,1978), JTT(1992), WAG(2001), LG (2008)
matrices.

« Functional models: Chloroplast-derived amino acid
replacement matrix (Adachi, 1996). Replacement
matrices derived from mitochondrially-encoded
proteins (Adachi and Hasegawa 2000, Yang 1998).

« Structural models: Amino acid replacement matrix for
alpha-helices, beta-sheets, turns and loops with each
category further classified whether it is buried or
exposed (e.g. Goldman et al., 1998, Overington et
al., 1990). |




+F method

* AA frequencies vary a lot between different
data sets; thus also between the database
the substitution matrix was estimated from
and the data set you want to analyse.

 The +F allows you to replace the frequencies
of the AA In the entire data base with the AA
frequencies from the specific data analysed.
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Example: JTT+F model

Model 1: JTT, Model2: JTT+F

For +F we need to estimate 19 new
parameters, the amino acid frequencies.

Thus we need to look at a ¢? distribution
of 19 degrees of freedom.

c2 (0.05, 19) = 30.14
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Gamma model

e Mixture Processes allow the modelling of
heterogeneity of process among different sites in
a protein.

 For example, suppose a process, where some of
the sites evolve according to one rate and the rest
of the sites evolve according to another.

 Choose a discrete gamma distribution of
evolutionary rates over sites (Yang, 1994).
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Gamma distributed among site
variation

o = co A

proportion of sites

substitution rate
continuous gamma distribution discrete gamma distribution
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Codon evolution
A GT A TC CGGATT

Transitions or transversion?

A GT ATCU CGAATT

Codon frequencies

CIICIGIA|A|TIA

/ Synonymous or
nonsynonymous?

CIIC|GIAI|ATHA
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The codon model MO

p if i ® ] synonymous transversion
Q= < pk if i ® j synonymous transition

pw if I ® j nonsynonymous transversion

p,k w if i ® j nonsynonymous transition

\

where

k : transition/transversion rate ratio

p, : equilibrium frequency of codon ]

W . nonsynonymous/synonymous rate ratio

(Goldman &Yang 1994,Yang et al. , 2000)

0 if 1 ->j is > 1 nucleotide substitution or j is a stop codon

©
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Calculating substitution probabilities

P(t) lists probabilities of amino acid mutations. &
Equilibrium distribution #: i)

Distribution of amino acids when time ¢ — co.

tQ)°  (tQ)’ it
P(f):etQ=I+tQ+(g) +(;2|) .

@ is the instantaneous rate matrix. o

GGA T+

Off-diagonal entries Q;;:

GTA T

Rates of replacement of 7 by j. e

The diagonal entries Q,;: iy

TCG 1

Defined by requirement that each row sums to zero. i}

TEE T
TGT +
TIA L
TICT
TTG T+
TITT
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II. Detecting positive
selection



Detecting positive selection using PAML

w< 1l purifying selection
w =1 neutral selection
w > 1 positive selection

Variation of nonsynomous/synonymous rate ration w
among sites:
Model 0 Model 2a

Model 1la

@ =006 m=1
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Variation of the nonsynonymous  —
synonymous rate ratio w among sites

Model 0 (2 classes of sites)
Each sites evolves with w, <1 or w;=1

Model + (3 classes of sites):
Each sites evolves with wy< 1, w,=1orw, > 1

w< 1l purifying selection
w =1 neutral evolution .

o ) (Branch-site models,
w> 1 positive selection Yang Nielsen, 1998)
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Statistics: Likelihood Ratio (LR) Test

» Likelihoods for different models can be
compared for nested models, that is, one
model Is a special case of the other.

* Twice the difference between the log-
likelihoods of two models is c2 distributed

2(logL,-logL,) ~ c?
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Complement component C7
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|\/|2a: Se|eCti0n (4) ! “ C3band C3a fragments
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2X (- 6520 02 — (-6530.84)) = 2 x 10. 82 21 64
C% gf=2 005 = 2-99 pvalue = 2.01e-05 26



Genome -wide scan of 6 species

B human? ’1

%
v

macaque/@

mouseﬁ

dog “!’

rat

¢ 16529 human / chimp /
macaque / mouse / rat /
dog orthologous genes

* We identify 400 positively
selected genes (PSGS)
with a test of selection on
any of the branches of the

phylogeny
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Functional analysis of PSGs

single fertilization




Co-evolution in the complement pathway



Lower expression levels in PSGs

[] Positively selected genes (PSGs)
B Non-positively selected genes (NPSGs)



Selection and Protein Structures



Variation of the nonsynonymous  —
synonymous rate ratio w

Among sites:

Model 0 (2 classes of sites)

Each sites evolves with w, <1 or w;=1

Model + (3 classes of sites):
Each sites evolves with wy <1, w,=1orw,>1

and lineages:

— speciesl

— sSpecies?2

— Species 3

w< 1l purifying selection
w =1 neutral evolution
w> 1 positive selection
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Tests of positive selection

E —
| S
human chimp hominid macaque
- - - -
—_ —_ —_ —_
C C C
—_ —_

Total: 544 PSG




Comparison of clades ‘D’

-/
Primates ’
[50 P-val
category -value
Olfactory
perception 6.3%9e-22
Rodents
Sensory
GO perception
P-value of chemical
category stimulus 0,
Immune -
response 3.55e-09 Sc;sr?;zm ’
P 1.24e-15
Inflammation 1.40e-08 receptor
Response to activity
3.37e-07 :
stress glril::reosl,(;glcal 3.886-07
CAME L e 06
Integral to 1.84€-06
membrane '




Methodological Summary

(Bielawski & Yang, 2004) (Yang & Nielsen, 2002;
Zhang, Nielsen &Yang,
2005)

(Guindon et al., 2004)



lll. Advances In modeling
codon sedguence evolution



Towards more ‘realistic ' codon
models

 Empirical codon models
* |Incorporating amino acid properties

e |ncorporating population genetic effects
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Estimating an Empirical Codon
Model (ECM)
Data:

*Translate cDNA to codon sequences

*Multiple sequence alignments

*Phylogenetic trees

e.g. Pandit 17.0 (http://www.ebi.ac.uk/goldman-srv/pandit/)

Estimation with Dart:

C++ implementation of an expectation maximization (EM)
algorithm to estimate substitution matrices (Holmes & Rubin,
2003).

Result:
Instantaneous rate matrix
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Doublet and Triplet changes occur

positions

1 nt change CNON |

2 nt change OO0 @
3 nt change O
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1 nt change
2 nt change
3 nt change

positions

" NON
ORON
O
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Doublet and Triplet changes occur

Multiple nucleotide
changes

Single = 75.3%
Double = 21.2%

Triple = 3.5%

positions

1 nt change CNON |

2 nt change OO0 @
3 nt change O
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Importance of the genetic code

Serine S « S
Direct changes require multiple
nt changes (e.g. AGC « TCT)

Arginine R « R:

Multiple nt or successive single
changes via another R

(e.g. CGG « CGA « AGA)

Valine V « Isoleucine I:
Multiple nt changes between
physicochemical related amino
acids (e.g. GTT « ATA)

positions

1 nt change CNON |

2 nt change OO0 @
3 nt change O

O
O

O
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Combined empirical-mechanistic models

0 If I orjis a stop codon

< sy k(i) if i ® j synonymous change

s;p; k() w if I ® ] nonsynonymous change
N

where numbers and parameters describing k(i,]) may vary,

because of the treatment of multiple transitions an d
transversions.

(Doron-Faigenboim & Pupko 2007; Kosiol, Holmes & Gold  man 2007)



Dependencies on Protein Structure
and AA properties

The original Goldman and Yang model incorporated
a term for AA using the Grantham index (1974), but
the model performed badly.

» Structure Dependent: Robinson et al. (2003)
considers neighbour dependencies, solvent
accessibllity, free energy of protein fold, require s 3D
protein structure is known.

* Physicochemical: Wong et al. (2006) partitioned a
priori the amino acids by one physicochemical

property.



Selection -Mutation models

FMutSel model :
Consider the ratio of the fixation probabilities

from preferred to unprefered codon and the
probability of fixation of a neutral mutation.

(Yang & Nielsen, 2008)

Site-heterogeneous
amino acid profiles:

(Rodrigue, Phillipe, Lartillot 2010)



Future directions of codon models

Mixture and general heterogeneous
models

Context dependencies

Fine-tuning of combined empirical and
mechanistic models

Interplay of macroevolution and population
genetics

Using codon models for phylogenetic
reconstruction



Programs using codon models

PAML (Yang, 1996, 2007)

MrBayes (Huelsenbeck & Ronquist, 2001; Ronquist &
Huelsenbeck, 2003)

HYPHY (Kosakovsky Pond et al., 2005)
SIMMAP (Bollback, 2006)

Garli (Zwickl, 2006)
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